L is aryl, OH, C(O)NH₂, COOH, SO₃H, OSO₃H, PO₃H₂, OPO₃H₂, NH₂, NHR₁₉, NR₁₉R₂₀, SO₂R₂₁, glycoside, lower C₁, C₂, C₃, C₄, C₅, C₆ alkoxy, or M is aryl, OH, C(O)NH $_2$, COOH, SO $_3$ H, OSO $_3$ H, PO $_3$ H $_2$, OPO $_3$ H $_2$, NH $_2$, NHR $_1$ 9, NR $_1$ 9 R_2 0, SO $_2$ R $_2$ 1, glycoside, lower C $_1$, C $_2$, C $_3$, C $_4$, C $_5$, C $_6$ alkoxy, or Q is aryl, OH, C(O)NH₂, COOH, SO₃H, OSO₃H, PO₃H₂, OPO₃H₂, NH₂, NHR₁₉, NR₁₉R₂₀, SO₂R₂₉ glycoside, lower C₁, C₂, C₃, C₄, C₅, C₆ alkoxy, or R_{19} , R_{20} and R_{21} are C_1 , C_2 , C_3 , C_4 , C_5 , or C_6 alkyl or R_{19} and R_{20} taken together with the attached nitrogen atom form a five membered ring; V is a bond, —CH₂—, —CH₂CH₂—, —CH₂CH₂CH₂—, —O—CH₂—, —OCH₂CH₂— or —OCH₂CH₂CH₂—; $\begin{array}{c} R_{12},\,R_{13},\,R_{14},\,R_{15},\,R_{16},\,R_{17},\,\text{and}\,\,R_{18},\,\text{are, independently,}\\ \text{H or }C_1,\,C_2,\,C_3,\,C_4,\,C_5,\,\text{or }C_6\text{ alkyl; and} \end{array}$ Z is $(CHR_1)_n$ —C(O)— $NR_2(CHR_3)_m$ —Ar, where Ar is a substituted or unsubstituted aryl or nitrogen-containing heteroaryl group, R_1 , R_2 , and R_3 are independently H or C_1 , C_2 , C_3 , C_4 , C_5 , or C_6 alkyl; and n and m are independently 0, 1, or 2. 3. A method of preventing or treating a cell proliferation disorder comprising administering to a subject in need thereof a compound having the formula IA: $$R_6$$ R_5 R_4 X_5 X_6 X_7 X_8 X_9 X_9 X_9 X_9 X_9 X_9 or a salt, solvate, hydrate, or prodrug thereof, wherein: T is absent, $CR_{12}R_{13}$, C(O), O, S, S(O), $S(O)_2$, NR_{14} , $C(R_{15}R_{16})C(R_{17}R_{18})$, CH_2O , or OCH_2 ; X_v is CZ, CY, N, or N—O; X_z is CZ, CY, N, or N—O; at least one of X_v and X_z is CZ; Y is selected from hydrogen, hydroxyl, halogen, lower $(C_1, C_2, C_3, C_4, C_5, \text{ or } C_6)$ alkyl, $C_1, C_2, C_3, C_4, C_5, \text{ or } C_6$ alkoxy, O-lower $(C_1, C_2, C_3, C_4, C_5, \text{ or } C_6)$ alkylaryl, and O-benzyl; X_a is CR_a or N, or N—O; X_b is CR_b , N, or N—O; X_c is CR_c or N, or N—O; X_d is CR_d or N, or N—O; X_e is CR_e , N, or N—O; $\begin{array}{l} R_{a},\ R_{b},\ R_{c},\ R_{d},\ R_{e},\ R_{4},\ R_{5},\ \text{and}\ R_{6}\ \text{are, independently,}\\ \ \text{hydrogen, hydroxyl, halogen, P, C}_{1},\ C_{2},\ C_{3},\ C_{4},\ C_{5},\ \text{or}\\ \ C_{6}\ \text{alkyl, C}_{1},\ C_{2},\ C_{3},\ C_{4},\ C_{5},\ \text{or}\ C_{6}\ \text{alkoxy, O-lower}\ (C_{1},\ C_{2},\ C_{3},\ C_{4},\ C_{5},\ \text{or}\ C_{6})\ \text{alkyl-aryl, O-benzyl, C}_{1},\ C_{2},\ C_{3},\ C_{4},\ C_{5},\ \text{or}\ C_{6}\ \text{alkyl-OH, COOH, COO-lower}\ (C_{1},\ C_{2},\ C_{3},\ C_{4},\ C_{5},\ \text{or}\ C_{6})\ \text{alkyl, SO}_{2}\text{H, SO}_{2}\text{-lower}\ (C_{1},\ C_{2},\ C_{3},\ C_{4},\ C_{5},\ \text{or}\ C_{6})\ \text{alkyl,} \end{array}$ $$V \longrightarrow N - W$$, $V - N$, $V - N$, or $V - N$, $V - N$ wherein W is H, or C_1 , C_2 , C_3 , C_4 , C_5 , or C_6 alkyl, C_1 , C_2 , C_3 , C_4 , C_5 , or C_6 alkyl-aryl; P is SO_3H , OSO_3H , OPO_3H_2 , OPO_3H_2 , NH_2 , NHR_{19} , NHR_7OR_{71} , tetrazole, O-lower (C_1 , C_2 , C_3 , C_4 , C_5 , or C_6) alkyl-K, O—C(O)-lower (C_1 , C_2 , C_3 , C_4 , C_5 , or C_6) alkyl-L, NH-lower (C_1 , C_2 , C_3 , C_4 , C_5 , or C_6) alkyl-M, or O-aryl-Q, further wherein lower (C_1 , C_2 , C_3 , C_4 , C_5 , or C_6) alkyl is linear or branched alkyl; K is C(O)NH₂, COOH, SO₃H, OSO₃H, PO₃H₂, OPO₃H₂, NH₂, NHR₁₉, NR₁₉R₂₀, SO₂R₂₁, glycoside, lower C₁, C₂, C₃, C₄, C₅, C₆ alkoxy, or L is aryl, OH, C(O)NH₂, COOH, SO₃H, OSO₃H, PO₃H₂, OPO₃H₂, NH₂, NHR₁₉, NR₁₉R₂₀, SO₂R₂₁, glycoside, lower C₁, C₂, C₃, C₄, C₅, C₆ alkoxy, or